A boiler is a closed vessel in which water or other fluid is heated. The fluid does not necessarily boil. (In North America, the term "furnace" is normally used if the purpose is not to boil the fluid.) The heated or vaporized fluid exits the boiler for use in various processes or heating applications,Including water heating, central heating, boiler-based power generation, cooking, and sanitation.


Fire-tube boiler

A fire-tube boiler is a type of boiler in which hot gases from a fire pass through one or (many) more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.

The fire-tube boiler developed as the third of the four major historical types of boilers: low-pressure tank or "haystack" boilers, flued boilers with one or two large flues, fire-tube boilers with many small tubes, and high-pressure water-tube boilers. Their advantage over flued boilers with a single large flue is that the many small tubes offer far greater heating surface area for the same overall boiler volume. The general construction is as a tank of water penetrated by tubes that carry the hot flue gases from the fire. The tank is usually cylindrical for the most part—being the strongest practical shape for a pressurized container—and this cylindrical tank may be either horizontal or vertical.

This type of boiler was used on virtually all steam locomotives in the horizontal "locomotive" form. This has a cylindrical barrel containing the fire tubes, but also has an extension at one end to house the "firebox". This firebox has an open base to provide a large grate area and often extends beyond the cylindrical barrel to form a rectangular or tapered enclosure. The horizontal fire-tube boiler is also typical of marine applications, using the Scotch boiler. Vertical boilers have also been built of the multiple fire-tube type, although these are comparatively rare; most vertical boilers were either flued, or with cross water-tubes.

Water-tube boiler

A water tube boiler (also spelled water-tube and water tube) is a type of boiler in which water circulates in tubes heated externally by the fire. Fuel is burned inside the furnace, creating hot gas which heats water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.

The heated water then rises into the steam drum. Here, saturated steam is drawn off the top of the drum. In some services, the steam will reenter the furnace through a super heater to become super heated. Super heated steam is defined as steam that is heated above the boiling point at a given pressure. Super heated steam is a dry gas and therefore used to drive turbines, since water droplets can severely damage turbine blades.

Cool water at the bottom of the steam drum returns to the feed water drum via large-bore 'down comer tubes', where it pre-heats the feed water supply. (In large utility boilers, the feed water is supplied to the steam drum and the down comers supply water to the bottom of the waterfalls). To increase economy of the boiler, exhaust gases are also used to pre-heat the air blown into the furnace and warm the feed water supply. Such water tube boilers in thermal power stations are also called steam generating units.

The older fire-tube boiler design, in which the water surrounds the heat source and gases from combustion pass through tubes within the water space, is a much weaker structure and is rarely used for pressures above 2.4 MPa (350 psi). A significant advantage of the water tube boiler is that there is less chance of a catastrophic failure: there is not a large volume of water in the boiler nor are there large mechanical elements subject to failure.

A water tube boiler was patented by Blakey of England in 1766 and was made by Dallery of France in 1780

  • Flash boiler

A flash boiler is a type of water-tube boiler. The tubes are close together and water is pumped through them. A flash boiler differs from the type of monotube steam generator in which the tube is permanently filled with water. In a flash boiler, the tube is kept so hot that the water feed is quickly flashed into steam and superheated. Flash boilers had some use in automobiles in the 19th century and this use continued into the early 20th century.

Flued boiler

A shell or flued boiler is an early and relatively simple form of boiler used to make steam, usually for the purpose of driving a steam engine. The design marked a transitional stage in boiler development, between the early haystack boilers and the later multi-tube fire-tube boilers. A flued boiler is characterized by a large cylindrical boiler shell forming a tank of water, traversed by one or more large flues containing the furnace. These boilers appeared around the start of the 19th century and some forms remain in service today. Although mostly used for static steam plants, some were used in early steam vehicles, railway locomotives and ships.

Flued boilers were developed in an attempt to raise steam pressures and improve engine efficiency. Early haystack designs of Watt's day were mechanically weak and often presented an unsupported flat surface to the fire. Boiler explosions, usually beginning with failure of this firebox plate, were common. It was known that an arched structure was stronger than a flat plate and so a large circular flue tube was placed inside the boiler shell. The fire itself was on an iron grating placed across this flue, with a shallow ashpan beneath to collect the non-combustible residue. This had the additional advantage of wrapping the heating surface closely around the furnace, but that was a secondary benefit.

Although considered as low-pressure (perhaps 25 psi (1.7 atm)) today, this was regarded as high pressure compared to its predecessors. This increase in pressure was a major factor in making locomotives (i.e. small self-moving vehicles) such as Trevithick's into a practical proposition.

Superheated steam boiler

When water is boiled the result is saturated steam, also referred to as "wet steam." Saturated steam, while mostly consisting of water vapor, carries some unevaporated water in the form of droplets. Saturated steam is useful for many purposes, such as cooking, heating and sanitation, but is not desirable when steam is expected to convey energy to machinery, such as a ship's propulsion system or the "motion" of a steam locomotive. This is because unavoidable temperature and/or pressure loss that occurs as steam travels from the boiler to the machinery will cause some condensation, resulting in liquid water being carried into the machinery. The water entrained in the steam may damage turbine blades or in the case of a reciprocating steam engine, may cause serious mechanical damage due to hydrostatic lock.

Superheated steam boilers evaporate the water and then further heat the steam in a superheater, causing the discharged steam temperature to be substantially above the boiling temperature at the boiler's operating pressure. As the resulting "dry steam" is much hotter than needed to stay in the vaporous state it will not contain any significant unevaporated water. Also, higher steam pressure will be possible than with saturated steam, enabling the steam to carry more energy. Although superheating adds more energy to the steam in the form of heat there is no effect on pressure, which is determined by the rate at which steam is drawn from the boiler and the pressure settings of the safety valves.The fuel consumption required to generate superheated steam is greater than that required to generate an equivalent volume of saturated steam. However, the overall energy efficiency of the steam plant (the combination of boiler, superheater, piping and machinery) generally will be improved enough to more than offset the increased fuel consumption.

Superheater operation is similar to that of the coils on an air conditioning unit, although for a different purpose. The steam piping is directed through the flue gas path in the boiler furnace, an area in which the temperature is typically between 1,300 and 1,600 degrees Celsius (2,372 and 2,912 degrees Fahrenheit). Some superheaters are radiant type, which as the name suggests, they absorb heat by radiation. Others are convection type, absorbing heat from a fluid. Some are a combination of the two types. Through either method, the extreme heat in the flue gas path will also heat the superheater steam piping and the steam within.

The design of any superheated steam plant presents several engineering challenges due to the high working temperatures and pressures. One consideration is the introduction of feedwater to the boiler. The pump used to charge the boiler must be able to overcome the boiler's operating pressure, else water will not flow. As a superheated boiler is usually operated at high pressure, the corresponding feedwater pressure must be even higher, demanding a more robust pump design.

We Sale,Service,Repair,Maintenance and Installation on all types of Boilers .

For More Service Information Contact us today !

Content Source from Wikipedia

Featured Posts
Posts Are Coming Soon
Stay tuned...
Recent Posts
Search By Tags
No tags yet.
Follow Us
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Basic Square

Copyright © 2019  American HVACR LLC | All Rights Reserved.